3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Линейная функция

Линейная функция

Функция называется линейной, если ее можно записать в виде (y=kx+b), где (k) и (b) -некоторые числа.

Функция не всегда сразу задана в виде (y=kx+b), иногда такой вид получится только после преобразований. Например, (y=6(x-1)+10x) — это линейная функция, потому что если раскрыть скобки и привести подобные слагаемые мы получим (y=16x-6).

График линейной функции всегда представляет собой прямую линию – отсюда и название: «линейная функция».

Чтобы в этом убедиться построим графики функций (y=2x), (y=frac<1><3>x-5), (y=8).

Если вы вдруг забыли, как строить графики, можете прочитать об этом здесь.

Как меняется график при разных (k)?

Чтобы определить, как влияет на график коэффициент (k), построим несколько функций разными (k): (frac<1><3>),(-frac<1><3>),(2),(-2) и (0). При этом во всех функциях сделаем (b) одинаковым (равным нулю), чтобы убрать его влияние.
То есть, построим графики для функций: (y=frac<1><3>x), (y=-frac<1><3>x), (y=2x), (y=-2x), (y=0).

Заметьте, что при (k=2) и (frac<1><3>) — функция возрастает, а при (k=-2) и (-frac<1><3>) — убывает. На самом деле:

При любом (k>0) функция возрастает и при любом (k модуль (k), тем «круче» график.

Как решать задачи на
линейную функцию « y = kx + b »

Построить график функции « y = 2x + 3 ». Найти по графику:

  1. значение « y » соответствующее значению « x » равному −1; 2; 3; 5 ;
  2. значение « x », если значение « y » равно 1; 4; 0; −1 .
Читать еще:  Скачать superantispyware на русском c ключом. Видео по установке и активации SUPERAntiSpyware

Вначале построим график функции « y = 2x + 3 ».

Используем правила, по которым мы строили график функции выше. Для построения графика функции « y = 2x + 3 » достаточно найти всего две точки.

Выберем два произвольных числовых значения для « x ». Для удобства расчетов выберем числа « 0 » и « 1 ».

Выполним расчеты и запишем их результаты в таблицу.

ТочкаКоордината
по оси « Оx »
Координата
по оси « Оy »
(·)Ay(0) = 2 · 0 + 3 = 3
(·)B1y(1) = 2 ·1 + 3 = 5

Отметим полученные точки на прямоугольной системе координат.

Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции « y = 2x + 3 ».

Теперь работаем с построенным графиком функции « y = 2x + 3 ».

Требуется найти значение « y », соответствующее значению « x »,
которое равно −1; 2; 3; 5 .

Тему «Как получить координаты точки функции» с графика функции мы уже подробно рассматривали в уроке «Как решать задачи на функцию».

В этому уроке для решения задачи выше вспомним только основные моменты.

Чтобы найти значение « y » по известному значению « x » на графике функции необходимо:

  1. провести перпендикуляр от оси « Ox » (ось абсцисс) из заданного числового значения « x » до пересечения с графиком функции;
  2. из полученной точки пересечения перпендикуляра и графика функции провести еще один перпендикуляр к оси « Oy » (ось ординат);
  3. полученное числовое значение на оси « Oy » и будет искомым значением.

По правилам выше найдем на построенном ранее графике функции « y = 2x + 3 » необходимые значения функции « y » для « x » равным −1; 2; 3; 5 .

Запишем полученные результаты в таблицу.

Заданное значение « x »Полученное с графика значение « y »
−11
27
39
513
Читать еще:  ТОП-10 Аркадных Игр Нашего Детсва

Переходим ко второму заданию задачи. Требуется найти значение « x », если значение « y » равно 1; 4; 0; −1 .

Выполним те же действия, что и при решении предыдущего задания. Разница будет лишь в том, что изначально мы будем проводить перпендикуляры от оси « Oy » .

Запишем полученные результаты в таблицу.

Заданное значение « y »Полученное с графика значение « x »
−1−2
−1,5
1−1
40,5

Как проверить, проходит ли график через точку

Рассмотрим другое задание.

Не выполняя построения графика функции « y = 2x −

1
3

», выяснить, проходит ли график через точки с координатами (0; −

1
3

) и (1; −2) .

Чтобы проверить принадлежность точки графику функции нет необходимости строить график функции.

Достаточно подставить координаты точки в формулу функции (координату по оси « Ox » вместо « x », а координату по оси « Oy » вместо « y ») и выполнить арифметические расчеты.

  • Если получится верное равенство, значит, точка принадлежит графику функции.
  • Если получится неверное равенство, значит, точка не принадлежит графику функции.

Подставим в функцию « y = 2x −

1
3

» координаты точки (0; −

1
3

) .

1
3

= 2 · 0 −

1
3

1
3

= −

1
3

(верно)
Это означает, что график функции « y = 2x −

1
3

» проходит через точку с координатами (0; −

1
3

) . Проверим точку с координатами (1; −2) . Также подставим координаты
в функцию « y = 2x −

1
3

».
−2 = 2 · 1 −

1
3

−2 = 2 −

1
3

−2 = 1

3
3

1
3

−2 = 1

2
3

(неверно)
Это означает, что график функции « y = 2x −

1
3

» не проходит через точку с координатами (1; −2) .

Как найти точки пересечения графика с осями

Найти координаты точек пересечения графика функции « y = −1,5x + 3 » с осями координат.

Для начала построим график функции « y = −1,5x + 3 » и на графике отметим точки пересечения с осями.

Читать еще:  Как делать скрин шоты. Как сделать скрин шот на компе с помощью клавиши Print Screen

Для построения графика функции найдем координаты двух точек
функции « y = −1,5x + 3 ».

Выберем два произвольных числовых значения для « x » и рассчитаем значение « y » по формуле функции. Например, для x = 0 и x = 1 .

ТочкаКоордината
по оси « Оx »
Координата
по оси « Оy »
(·)Ay(0) = −1,5 · 0 + 3 = 3
(·)B1y(1) = −1,5 · 1 + 3 = 1,5

Отметим полученные точки на системе координат и проведем через них прямую. Тем самым мы построим график функции « y = −1,5x + 3 ».

Теперь найдем координаты точек пересечения графика функции с осями по формуле функции.

Чтобы найти координаты точки пересечения графика функции
с осью « Oy » (осью ординат) нужно:

  • приравнять координату точки по оси « Ox » к нулю (x = 0) ;
  • подставить вместо « x » в формулу функции ноль и найти значение « y »;
  • записать полученные координаты точки пересечения с осью « Oy » .

Подставим вместо « x » в формулу функции « y = −1,5x + 3 » число ноль.

Чтобы найти координаты точки пересечения графика функции
с осью « Ox » (осью абсцисс) нужно:

  • приравнять координату точки по оси « Oy » к нулю (y = 0) ;
  • подставить вместо « y » в формулу функции ноль и найти значение « x »;
  • записать полученные координаты точки пересечения с осью « Oy » .

Подставим вместо « y » в формулу функции « y = −1,5x + 3 » число ноль.

Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните «правило противоположности».

Если нужно найти координаты точки пересечения графика с осью « Ox » , то приравниваем « y » к нулю.

И наооборот. Если нужно найти координаты точки пересечениа графика с осью « Oy » , то приравниваем « x » к нулю.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector