0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики и параметры полупроводникового диода

Характеристики и параметры полупроводникового диода

Вольт-амперная характеристика (ВАХ) полупроводникового диода на постоянном токе (статическая характеристика).

Вольт-амперная характеристика — это зависимость тока i, протекающего через диод, от напряжения u , приложенного к диоду (рис. 1.25). Вольт-амперной характеристикой называют и график этой зависимости.

Вначале будем полагать (см. рис. 1.25), что обратное напряжение (u u /φr- 1)

Тепловой ток is обусловлен генерацией неосновных носителей в областях, прилегающих к области p-n-перехода. Однако часто это идеализированное описание дает неприемлемую погрешность. Особенно большая погрешность возникает при вычислении тока диода, включенного в обратном направлении (U > (φт)) для кремниевых диодов оказывается на несколько порядков меньше реального. В то же время стоит отметить, что в некоторых расчетах обратным током вообще можно пренебречь.

Укажем причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (u> 0,i> 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:

  • сопротивления слоев полупроводника (особенно базы);
  • сопротивления контактов металл-полупроводник.

Важно отметить, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта), чем это следует из формулы.

Обратимся к обратной ветви (u

Обратимся к режиму пробоя полупроводникового диода и соответствующему участку обратной ветви вольт-амперной характеристики (на рис. 1.27 этот участок не показан).

Диоды многих конкретных типономиналов не предназначены для работы в режиме пробоя. Для них этот режим работы — аварийный. Если при пробое ток в цепи не ограничивается (например, внешним сопротивлением), то диод выходит из строя. В таких приборах при чрезмерном увеличении обратного напряжения (по модулю) практически сразу же начинается тепловой пробой (участок электрического пробоя практически отсутствует).

Напряжение начала пробоя для рассматриваемых диодов — величина нестабильная (пробой начинается при u= -u роб, где uпроб— так называемое напряжение пробоя — положительная величина). Изобразим соответствующую вольт-амперную характеристику (рис. 1.28).

Диоды некоторых конкретных типов спроектированы с расчетом на работу в режиме лавинного пробоя в течение некоторого короткого времени. Такие диоды называют лавинными. Если отрезок времени, в течение которого диод находится в режиме лавинного пробоя, невелик, то его p-n-переход не успевает перегреться и диод не выходит из строя.

Иначе лавинный пробой перейдет в тепловой и диод выйдет из строя.

Изобразим вольт-амперную характеристику для лавинного диода (рис. 1.29).

Лавинные диоды, как правило, более надежны в сравнении с обычными кратковременные (перенапряжения не выводят лавинный диод из строя).

Для некоторых конкретных типов диодов режим пробоя является основным рабочим режимом. Это так называемые стабилитроны, рассматриваемые ниже.

  1. Зависимость барьерной емкости диода от напряжения.
  2. Временные диаграммы тока и напряжения диода при его переключении.
  3. Параметры диодов.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Читать еще:  Биткоин кошелек холодного хранения - как создать и установить, принципы кодирования и рейтинг самых надежных. Как надежно хранить биткоины и другие криптовалюты Как перевести биткоины на флешку

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Стабилизация напряжения и Стабилитроны.

Выходное напряжение обычного, нестабилизированного источника постоянного электрического тока подвержено колебаниям, из- за изменений напряжения на его входе. Рисунок. При подключении различных потребителей потребляющих разный ток напряжение так же меняется – возрастает при меньшей нагрузке, падает при большей. Для нормальной работы электронных устройств необходимо это напряжение стабилизировать, сделав его величину независимой от вышеупомянутых факторов. Стабилитроны это полупроводниковые диоды, использующиеся для стабилизации напряжения в различных источниках питания. В отличии от обычных диодов работают при обратном включении, в режиме пробоя. Это не наносит им вреда, если не превышается предел рассеивающей мощности, величина которого является производной, от падения напряжения на переходе и тока через него протекающего.

Итак, важнейшие параметры стабилитрона — это напряжение стабилизации и максимальный рабочий ток. Рабочий ток стабилитрона, ограничивается с помощью последовательно включенного резистора.

Статическая ВАХ полупроводникового диода

Статическую ВАХ полупроводникового диода (ВАХ при постоянном токе) в области прямых токов можно измерить по точкам в схеме, показанной на следующем рисунке. Величина резистора R2, ограничивающего ток через испытуемый диод, выбирается исходя из значения максимального прямого тока.

Отметим, что результат измерений ВАХ на постоянном токе чаще всего может оказаться неточным: при больших токах будет происходить разогрев полупроводникового перехода, a c ростом температуры экспоненциально возрастает и ток. Поэтому фактические данные измеренной ВАХ будут соответствовать более высокой температуре. Поскольку изменение температуры перехода происходит постепенно и зависит от массы и теплофизических характеристик материалов диода, результат будет зависеть от продолжительности измерения. a также от того, при увеличении или понижении тока (напряжения) троисходят измерения.

Для исследования обратной ветви ВАХ по ее отдельным точкам можно воспользоваться следующей схемой. Величина подаваемого на полупроводниковый диод напряжения ограничена максимальным значением обратного напряжения для исследуемого прибора. Предельную величину обратного тока через диод ограничивает резистор R2.

При исследовании обратной ветви ВАХ на постоянном токе разогрев перехода в процессе эксперимента также сказывается на результате измерений.

Временные диаграммы тока и напряжения диода при его переключении.

Обратимся к схеме на рис. 1.31. Предполагается, что вначале ключ К подключает источник напряжения u1, а затем, в момент времени t = 0, источник напряжения u2.

Предполагается также, что напряжения u1 и u2 значительно больше прямого падения напряжения на диоде. Изобразим соответствующие временные диаграммы (рис. 1.32).

До момента времени t = 0 протекает ток i1, который с учетом принятого условия u1>>u определяется выражением i1=u1/R/ Сразу после переключения ключа К и в течение так называемого времени рассасывания tрас протекает ток i2, который ограничивается практически только сопротивлением R, т. е. i2= — (u1/R). В этот отрезок времени в базе диода уменьшается (рассасывается) заряд накопленных при протекании тока неравновесных носителей. Заряд уменьшается в результате рекомбинации и перехода неосновных носителей в эмиттер.

По истечении времени tpac концентрация неосновных носителей в базе на границе p-n-перехода становится равной равновесной. В глубине же базы неравновесный заряд еще существует. Длительность времени рассасывания прямо пропорциональна среднему времени жизни неосновных носителей в базе и зависит от соотношения токов i1 и i2 (чем больше по модулю ток i2, тем меньше, при заданном токе i1, время рассасывания).

Читать еще:  Что Такое Viber и Как Им Пользоваться? Всё Про Мессенджер

В момент времени t1 напряжение на диоде начинает быстро возрастать по модулю, а ток i уменьшаться по модулю (спадать). Соответствующий отрезок времени tcп называют временем спада. Время спада отсчитывают до того момента t2 которому соответствует достаточно малое (по модулю) значение тока i3.

Время спада зависит от времени жизни носителей, а также от барьерной емкости диода и от сопротивления R схемы.

Чем больше указанные емкость и сопротивление R, тем медленнее спадает ток.

Отрезок времени tвос = tpac + tcп называется временем восстановления (временем обратного восстановления).

После завершения переходного процесса (момент времени t3) через диод течет ток iобр ycm — обратный ток в установившемся режиме (определяемый по статической вольт-амперной характеристике диода).

Для упомянутого выше диода 2Д212А типовое время восстановления — 150 нc (150 · 10

9 с) при i1 = 2 А (импульсный ток) и i2 = 0,2 А.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тиристоры.

Трехэлектродные тиристоры(тринисторы) — полупроводниковые приборы, применяемые для регулирования мощности в сетях переменного и постоянного токов. Тиристор легко переходит из закрытого (непроводящего) состояния в открытое, при подаче на управляющий электрод открывающего импульса. После того, как тиристор открыт, он остается в таком состоянии, пока протекающий через него ток не снизится до определенного порогового значения.

При работе в цепях переменного тока, подобное снижение происходит с каждой сменой полярности, при изменении фазы. В цепях постоянного тока, для отключения используются специальные схемы.

ВАХ полупроводниковых диодов из разных материаллов

ВАХ полупроводниковых диодов как в прямом, так и в обратном направлениях протекания тока аппроксимируются экспоненциальными функциями. На практике совпадение расчетных (теоретических) и экспериментальных характеристик наблюдается лишь на ограниченных участках кривых, например, в области малых токов. В области прямых больших токов (напряжений) зависимость тока от напряжения практически линейна. На рисунке показаны реальные ВАХ полупроводниковых диодов.

ВАХ полупроводниковых диодов, выполненных из разных материалов и разными методами (точечные — m, плоскостные — n). Монокристаллические: германиевые — Ge, кремниевые — Si; поликристаллические: меднозакисные (купроксные) — Cu2O; селеновые — Se.

Читать еще:  Новые iPhone и не только: самые горячие слухи о последних новинках Apple. Во сколько начнется презентация Apple и какие новинки представит миру IT-корпорация Во сколько состоится презентация apple

В последние десятилетия в отечественной литературе избегают приводить внешний вид ВАХ полупроводниковых приборов. И это не случайно. Вольт-амперные характеристики не очень хорошо воспроизводимы: они отличаются даже у приборов одной партии. Кроме того, ВАХ, особенно для силовых низкочастотных полупроводниковых приборов, сильно зависят от частоты, от сопротивления нагрузки, его резистивно-емкостных и иных характеристик.

Тем не менее, свойства полупроводниковых приборов необходимо каким-то образом описывать. В этой связи в паспортах на них и справочных руководствах принято указывать параметры характерных точек на ВАХ, полученные путем статистического усреднения данных по большой выборке однотипных полупроводниковых приборов испытанных по стандартизированной методике измерений, в пределах использования которой эти данные достаточно воспроизводимы.

К наиболее важным параметрам, характеризующим избранные и наиболее практически значимые точки ВАХ, принято относить:

  • Прямой ток (Iпр.) — среднее значение тока через открытый диод, при котором обеспечивается надежный режим работы.
  • Прямое падение напряжения (Uпр.) — напряжение на диоде при прохождении прямого тока Iпр.
  • Обратный ток (Iобр.) — ток через диод при определенном обратном напряжении.
  • Максимальное обратное напряжения (Uобр.) — напряжение, соответствующее безопасной области работы, после превышения которого может произойти повреждение прибора.

    Все эти сведения для выпрямительных диодов обычно приводят для области низких частот, a именно, 50 Гц. При повышенных частотах на работу полупроводниковых силовых приборов начинают заметно влиять емкости переходов, что можно наблюдать, например, на характериографе. Более того, емкости переходов изменяются в несколько раз при разном уровне приложенного напряжения, a также существенно разнятся при прямом и обратном включении. На практике c ростом частоты диоды теряют выпрямительные свойства и больше напоминают резистивноемкостную цепочку, поэтому при выборе диода для той или иной схемы необходимо учитывать его частотные характеристики.

    Как следует из последнего рисунка, ВАХ различных полупроводниковых приборов заметно отличаются друг от друга. Эти различия часто используют во благо при создании полупроводниковых приборов, предназначенных для выполнения специфических функций. B частности, селеновые выпрямители не могут составить конкуренцию кремниевым или германиевым, поскольку рассчитаны на малый прямой ток и малое обратное напряжение, зато свойства их более воспроизводимы,что позволяет применять селеновые выпрямители при параллельном или последовательном их включении без использования уравнительных резисторов (обычно для создания слаботочных высоковольтных выпрямительных столбов).

    Меднозакисные выпрямители в настоящее время практически не используют, однако их и сейчас можно встретить в некоторых измерительных приборах.

    Наиболее широкое распространение в последнее время получили кремниевые и, в меньшей мере, германиевые полупроводниковые диоды. Кремниевые выгодно отличаются тем, что способны работать при повышенных температурах, вплоть до 100. 130 o С. Они имеют меньшие обратные токи, допускают работу при более высоких обратных напряжениях — до 800. 1200В. Германиевые диоды имеют малое прямое падение напряжения на переходе, но работают до температур не выше 70 o С. Кроме перечисленных, выпрямительные функции могут выполнять и другие полупроводниковые приборы, например на основе арсенида галлия GaAs или антимонида индия InSb.

    Параметры диодов.

    Для того, чтобы количественно охарактеризовать диоды, используют большое количество (измеряемое десятками) различных параметров. Некоторые параметры характеризуют диоды самых различных подклассов.

    Другие же характеризуют специфические свойства диодов только конкретных подклассов.

    Укажем наиболее широко используемые параметры, применяемые к диодам различных подклассов:

    Iпр макс — максимально допустимый постоянный прямой ток;

    Uпp — постоянное прямое напряжение, соответствующее заданному току;

    Uобр макс — максимально допустимое обратное напряжение диода (положительная величина);

    Iобр макс — максимально допустимый постоянный обратный ток диода (положительная величина; если реальный ток больше, чем Iобр макс , то диод считается непригодным к использованию);

    Rдиф — дифференциальное сопротивление диода (при заданном режиме работы).

    В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов Iпр макс составляет килоамперы, a Uобр макс — киловольты.

  • Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector